TABLE W-20
Exposure Parameters for Upper Trophic Level Ecological Receptors—Step 3
St. Louis Ordnance Plant, Former Hanley Area, St. Louis, Missouri

-	Вс	dy Weight (kg)	Wate	er Ingestion Rate (L/day)	Food Ingestion Rate (kg/day - dry			
Receptor	Value Reference		Value	Reference	Value	Reference		
Birds								
Rufous-Sided Towhee	0.04	Clench and Leberman 1978	0.0067	allometric equation	0.0071	allometric equation		
Wild Turkey	3.20	Eaton 1992	0.1286	allometric equation	0.1241	allometric equation		
Mammals								
Coyote	9.76	Bekoff 1977	0.7694	allometric equation	0.4470	allometric equation		
Short-Tailed Shrew	0.017	USEPA 1993a	0.0038	USEPA 1993a	0.0015	USEPA 1993a		
White-Footed Mouse	0.021	Silva and Downing 1995	0.0062	Sample and Suter 1994	0.0005	Sample and Suter 1994		
White-Tailed Deer	52.9	Silva and Downing 1995	3.5216	allometric equation	0.2610	Sample and Suter 1994		

TABLE W-20
Exposure Parameters for Upper Trophic Level Ecological Receptors—Step 3
St. Louis Ordnance Plant, Former Hanley Area, St. Louis, Missouri

				Dietary Co	mposition (p	ercent)		Soil/ S	ediment Ingestion (percent)
Receptor	Terr. Plants	Soil Invert.	Small Mammals	Fish/ Frogs	Aquatic Plants	Benthic Invert.	Reference	Value	Reference
Birds						-			
Rufous-Sided Towhee	41.6	58.4	0	0	0	0	Greenlaw 1996	0	Greenlaw 1996
Wild Turkey	96.4	3.6	0	0	0	0	Shemnitz 1956	0	Shemnitz 1956
Mammals									
Red Fox	7.0	2.8	87.4	0	0	0	USEPA 1993a	2.8	Beyer et al. 1994
Short-Tailed Shrew	4.7	82.3	0	0	0	0	USEPA 1993a; Sample and Suter 1994	13.0	Sample and Suter 1994
White-Footed Mouse	51.0	47.0	0	0	0	0	Martin et al. 1951; Sample and Suter 1994	2.0	Beyer et al. 1994
White-Tailed Deer	98.0	0	0	0	0	0	Sample and Suter 1994	2.0	Beyer et al. 1994

TABLE W-21
Comparison of Detected Surface Soil Concentrations to Direct Exposure Screening Values St. Louis Ordnance Plant, Former Hanley Area, St. Louis, Missouri

	Mean	Screening	Mean Hazard
Inorganics (mg/kg)	Concentration	Value	Quotient
Arsenic	9.10	18	0.51
Barium	169.52	330	0.51
Chromium	14.70	0.4	37
Copper	50.17	70	0.72
Lead	136.76	120	1.1
Manganese	684.75	220	3.1
Mercury	0.07	0.1	0.69
Selenium	1.56	0.52	3.0
Thallium	14.06	1.0	14
Vanadium	25.99	2.0	13
Zinc	162.55	120	1.4

TABLE W-22

Comparison of White-footed Mouse Exposure Doses to Ingestion Screening Values - PCOC Refinement St. Louis Ordnance Plant, Former Hanley Area, St. Louis. Missouri

					Terrestrial						
	Soil		Terrestrial Plant	Soil -	Invertebrate	Surface Water	Dietary				
	Concentration	Soil - Plant	Concentration	Invertebrate	Concentration	Concentration	Intake	NOAEL TRV	LOAEL TRV		
Chemical	(mg/kg)	BCF	(mg/kg dry)	BAF	(mg/kg)	(mg/L)	(mg/kg/d)	(mg/kg/d)	(mg/kg/d)	NOAEL HQ	LOAEL HQ
Arsenic	9.10	0.037	0.337	0.258	2.347	0	0.0350	0.126	1.26	0.28	0.028
Cadmium	1.58	0.514	0.810	7.660	12.065	0	0.1467	1	10	0.15	0.015
Chromium	14.70	0.048	0.706	0.320	4.705	0	0.0687	3.28	32.8	0.021	< 0.01
Lead	136.76	0.038	5.156	0.31	41.982	0	0.6022	8	80	0.08	0.008
Mercury	0.07	0.34	0.024	1.2	0.082	0	0.0012	0.032	0.16	0.039	< 0.01
Selenium	1.56	0.567	0.884	0.982	1.530	0	0.0288	0.2	0.33	0.14	0.087
Silver	5.30	0.013	0.067	2.0	10.847	0	0.1257	1.812	18.12	0.069	< 0.01
Zinc	162.55	0.36	58.146	2.5	403.413	0	5.3388	160	320	0.033	0.017

 $DI_{x} = \frac{\sum (FIR)(FC_{xi})(PDF_{i}) + [(FIR)(SC_{x})(PDS) + [(WIR)(WCx)]}{BW}$ DI = Chemical-specific = Dietary intake for chemical (mg chemical/kg body weight/day)

FIR = 0.000499062 = Food ingestion rate (kg/day dry weight)

FCxi = Chemical-specific = Concentration of chemical in food item (plants, mg/kg, dry weight basis)

PDFi = 0.51 = Proportion of diet composed of food item (plants, dry weight basis)

FCxi = Chemical-specific = Concentration of chemical in food item (invertebrates, mg/kg, dry weight basis)

PDFi = 0.47 = Proportion of diet composed of food item (invertebrates, dry weight basis)

PDFi = 0.47 = Proportion of diet composed of food item (invertebrates, SCx = Chemical-specific = Concentration of chemical in soil (mg/kg, dry weight)

PDS = 0.02 = Proportion of diet composed of soil (dry weight basis)

WIR = 0.00624 = Water ingestion rate (L/day)

WCx = Chemical-specific = Concentration of chemical in water (mg/L)

BW = 0.0208 = Body weight (kg wet weight)

HQ = Dl_x
Screening Value

TABLE W-23
Comparison of Short-tailed Shew Exposure Doses to Ingestion Screening Values - PCOC Refinement St. Louis Ordnance Plant, Former Hanley Area, St. Louis, Missouri

	Soil		Terrestrial Plant	Soil -	Terrestrial Invertebrate	Surface Water	Dietary				
Inorganics (mg/kg)	Concentration (mg/kg)	Soil - Plant BCF	Concentration (mg/kg dry)	Invertebrate BAF	Concentration (mg/kg)	Concentration (mg/L)	Intake (mg/kg/d)	NOAEL TRV (mg/kg/d)	LOAEL TRV (mg/kg/d)	NOAEL HQ	LOAEL HQ
Arsenic	9.10	0.037	0.337	0.258	2.347	0	0.277	0.126	1.26	2.2	0.22
Cadmium	1.58	0.514	0.810	7.660	12.065	0	0.900	1	10	0.90	0.090
Chromium	14.70	0.048	0.706	0.320	4.705	0	0.515	3.28	32.8	0.16	0.016
Copper	50.17	0.123	6.174	0.468	23.484	0	2.313	78	104	0.030	0.022
Lead	136.76	0.038	5.156	0.31	41.982	0	4.653	8	80	0.58	0.06
Mercury	0.07	0.34	0.024	1.2	0.082	0	0.007	0.032	0.16	0.21	0.043
Selenium	1.56	0.567	0.884	0.982	1.530	0	0.133	0.2	0.33	0.67	0.40
Silver	5.30	0.013	0.067	2.0	10.847	0	0.851	1.812	18.12	0.47	0.047
Zinc	162.55	0.36	58.146	2.5	403.413	0	31.495	160	320	0.20	0.10

Dí _x = _	$\sum (FIR)(FC_{xi}$	$(PDF_i) + [(FIR)(SC_x)(PDS) + [(WIR)(WCx)]$
Di _X		BW
DI =	Chemical-specific	= Dietary intake for chemical (mg chemical/kg body weight/day)
FIR =	0.0015	= Food ingestion rate (kg/day dry weight)
FCxi =	Chemical-specific	= Concentration of chemical in food item (plants, mg/kg, dry weight basis)
PDFi =	0.047	= Proportion of diet composed of food item (plants, dry weight basis)
FCxi =	Chemical-specific	= Concentration of chemical in food item (invertebrates, mg/kg, dry weight basis)
PDFi =	0.823	= Proportion of diet composed of food item (invertebrates, dry weight basis)
SCx =	Chemical-specific	= Concentration of chemical in soil (mg/kg, dry weight)
PDS =	0.13	= Proportion of diet composed of soil (dry weight basis)
WIR =	0.0038	= Water ingestion rate (L/day)
WCx =	Chemical-specific	= Concentration of chemical in water (mg/L)
BW =	0.017	= Body weight (kg wet weight)
HQ = -		DI _x
	-	2

Screening Value

TABLE W-24
Comparison of Coyote Exposure Doses to Ingestion Screening Values - PCOC Refinement St. Louis Ordnance Plant, Former Hanley Area, St. Louis, Missouri

Chemical	Soil Concentration (mg/kg)	Soil - Plant BCF	Terrestrial Plant Concentration (mg/kg dry)	Soil - Invertebrate BAF	Terrestrial Invertebrate Concentration (mg/kg dry)	Soil - Mouse BAF	Mouse Concentration (mg/kg)	Soil - Shrew BAF	Shrew Concentration (mg/kg)	Surface Water Concentration (mg/L)	Dietary Intake	NOAEL TRV (mg/kg/d)	LOAEL TRV (mg/kg/d)	NOAEL HQ	. LOAEL HQ
Copper	51.16	0.123	6.296	0.468	23.949	0.111	5.664	0.502	25.667	0	0.743524	11.7	15.14	0.06	0.049
Lead	147.65	0.038	5.567	0.31	45.324	0.055	8.096	0.148	21.820	0	0.864011	4.7	23.5	0.18	0 037
Selenium	1.56	0.567	0.884	0.982	1.530	0.258	0.402	0.273	0.425	0	0.023349	0.2	0.33	0.12	0.07
Silver	5,16	0.013	0.065	2.0	10.555	0.151	0.781	0.036	0.184	0	0.039671	9.06	45.3	<0.01	<0.01
Zinc	165.54	0.358	59.218	2.482	410.849	0.509	84.300	0 862	142.690	0	5.47174	20.8	208	0.26	0.026

 $DI_{L} = \sum (FIR)(FC_{xi})(PDF_i) + [(FIR)(SC_x)(PDS) + [(WIR)(WCx)]$ DI = Chemical-specific = Dietary intake for chemical (mg chemical/kg body weight/day) FIR = 0.447= Food ingestion rate (kg/day dry weight, from Table) FCxi = Chemical-specific = Concentration of chemical in food item (plants, mg/kg, dry weight basis) PDFi = 0.07= Proportion of diet composed of food item (plants, dry weight basis, from Table) FCxi = Chemical-specific = Concentration of chemical in food item (invertebrates, mg/kg, dry weight basis) PDFi = 0.028 = Proportion of diet composed of food item (invertebrates, dry weight basis, from Table) FCxi = Chemical-specific = Concentration of chemical in food item (mouse, mg/kg, dry weight basis) PDFi = 0.437= Proportion of diet composed of food item (mouse, dry weight basis, from Table) FCxi = Chemical-specific = Concentration of chemical in food item (shrew, mg/kg, dry weight basis) PDFi = 0.437 = Proportion of diet composed of food item (shrew, dry weight basis, from Table) SCx = Chemical-specific = Concentration of chemical in soil (mg/kg, dry weight, maximum from Table) PDS = 0.028= Proportion of diet composed of soil (dry weight basis, from Table) WIR = 0.769= Water ingestion rate (L/day, from Table) WCx = Chemical-specific = Concentration of chemical in water (mg/L, maximum from) BW = 9.76= Body weight (kg wet weight, minimum from Table) DI, HQ = -Screening Value (from Table)

TABLE W-25
Comparison of White-tailed Deer Exposure Doses to Ingestion Screening Values - PCOC Refinement St. Louis Ordnance Plant, Former Hanley Area, St. Louis, Missouri

Chemical	Soil Concentration (mg/kg)	Soil - Plant BCF	Terrestrial Plant Concentration (mg/kg dry)	Surface Water Concentration (mg/L)	Dietary Intake (mg/kg/d)	NOAEL TRV (mg/kg/d)	LOAEL TRV (mg/kg/d)	NOAEL HQ	LOAEL HQ
Arsenic	9.06	0.037	0.335664575	0	0.0025165	0.126	1.26	0.020	<0.01
Lead	147.65	0.038	5.566923748	0	0.0414866	8	80	<0.01	<0.01_

 $\mathsf{DI}_\mathsf{x} = \sum (\mathsf{FIR})(\mathsf{FC}_\mathsf{xi})(\mathsf{PDF}_\mathsf{i}) + [(\mathsf{FIR})(\mathsf{SC}_\mathsf{x})(\mathsf{PDS}) + [(\mathsf{WIR})(\mathsf{WCx})]$ = Dietary intake for chemical (mg chemical/kg body weight/day) DI = Chemical-specific FIR = 0.261= Food ingestion rate (kg/day dry weight, from Table) = Concentration of chemical in food item (plants, mg/kg, dry weight basis) FCxi = Chemical-specific PDFi = 0.98= Proportion of diet composed of food item (plants, dry weight basis, from Table) = Concentration of chemical in soil (mg/kg, dry weight, maximum from Table) SCx = Chemical-specific = Proportion of diet composed of soil (dry weight basis, from Table) PDS = 0.02= Water ingestion rate (L/day, from Table) WIR = 3.522WCx = Chemical-specific = Concentration of chemical in water (mg/L, maximum from) BW = 52.9= Body weight (kg wet weight, minimum from Table)

HQ = DI_x
Screening Value (from Table)

TABLE W-26

Comparison of Rufous-sided Towhee Exposure Doses to Ingestion Screening Values - PCOC Refinement St. Louis Ordnance Plant, Former Hanley Area, St. Louis, Missouri

					Terrestrial						
	Soil Concentration	Soil - Plant	Terrestrial Plant Concentration	Soil - Invertebrate	Invertebrate Concentration	Surface Water Concentration	Dietary Intake	NOAEL TRV	LOAEL TRV	NOAEL	LOAEL
Chemical	(mg/kg)	BCF	(mg/kg dry)	BAF	(mg/kg)	(mg/L)	(mg/kg/d)	(mg/kg/d)	(mg/kg/d)	HQ	HQ
Arsenic	9.10	0.037	0.337	0.258	2.347	0	0.272	2.46	7.38	0.11	0.04
Cadmium	1.58	0.514	0.810	7.660	12.065	0	1.329	1.45	20	0.92	0.066
Chromium	14.70	0.048	0.706	0.320	4.705	0	0.548	1	5	0.55	0.11
Copper	50.17	0.123	6.174	0.468	23.484	0	2.932	47	61.7	0.06	0.048
Lead	136.76	0.038	5.156	0.31	41.982	0	4.802	3.85	19.25	1.2	0.25
Mercury	0.07	0.34	0.024	1.2	0.082	0	0.010	0.026	0.078	0.40	0.13
Selenium	1.56	0.567	0.884	0.982	1.530	0	0.227	0.4	8.0	0.57	0.28
Silver	5.30	0.013	0.067	2.0	10.847	0	1.146	35.6	178	0.032	< 0.01
Zinc	162.55	0.36	58.146	2.5	403.413	0	46.783	14.5	131	3.2	0.36

$$DI_x = \frac{\sum (FIR)(FC_{xi})(PDF_i) + [(FIR)(SC_x)(PDS) + [(WIR)(WCx)]}{BW}$$

$$DI = Chemical-specific = Dietary intake for chemical (mg chemical/kg body weight/day)$$

$$FIR = 0.0071 = Food ingestion rate (kg/day dry weight)$$

$$FCxi = Chemical-specific = Concentration of chemical in food item (plants, mg/kg, dry weight basis)$$

$$PDFi = 0.416 = Proportion of diet composed of food item (plants, dry weight basis)$$

$$FCxi = Chemical-specific = Concentration of chemical in food item (invertebrates, mg/kg, dry weight basis)$$

$$PDFi = 0.584 = Proportion of diet composed of food item (invertebrates, dry weight basis)$$

$$SCx = Chemical-specific = Concentration of chemical in soil (mg/kg, dry weight)$$

$$PDS = 0 = Proportion of diet composed of soil (dry weight basis)$$

$$WIR = 0.0067 = Water ingestion rate (L/day)$$

$$WCx = Chemical-specific = Concentration of chemical in water (mg/L)$$

$$BW = 0.0393 = Body weight (kg wet weight)$$

Screening Value

TABLE W-27
Comparison of Wild Turkey Exposure Doses to Ingestion Screening Values - PCOC Refinement St. Louis Ordnance Plant, Former Hanley Area, St. Louis, Missouri

Chemical	Soil Concentration (mg/kg)	Soil - Plant BCF	Terrestrial Plant Concentration (mg/kg dry)	Soil - Invertebrate BAF	Terrestrial Invertebrate Concentration (mg/kg)	Surface Water Concentration (mg/L)	Dietary Intake (mg/kg/d)	NOAEL TRV (mg/kg/d)	LOAEL TRV (mg/kg/d)	NOAEL HQ	LOAEL HQ
Lead	136.76	0.038	5.156	0.307	41.982	0	0.2513899	1.13	11.3	0.22	0.022
Mercury	0.07	0.344	0.024	1.186	0.082	0	0.0010013	0.026	0.078	0.039	0.013
Selenium	1.56	0.567	0.884	0.982	1.530	0	0.0351774	0.4	8.0	0.088	0.044
Zinc	5.30	0.358	1.897	2.482	13.164	0	0.0893129	14.5	131	0.01	0.001

 $DI_{x} = \frac{\sum (FIR)(FC_{xi})(PDF_{i}) + [(FIR)(SC_{x})(PDS) + [(WIR)(WCx)]}{BW}$

DI = Chemical-specific = Dietary intake for chemical (mg chemical/kg body weight/day)

FIR = 0.124 = Food ingestion rate (kg/day dry weight)

FCxi = Chemical-specific = Concentration of chemical in food item (plants, mg/kg, dry weight basis)

PDFi = 0.964 = Proportion of diet composed of food item (plants, dry weight basis)

FCxi = Chemical-specific = Concentration of chemical in food item (invertebrates, mg/kg, dry weight basis)

PDFi = 0.036 = Proportion of diet composed of food item (invertebrates, dry weight basis)

SCx = Chemical-specific = Concentration of chemical in soil (mg/kg, dry weight)
PDS = 0 = Proportion of diet composed of soil (dry weight basis)

WIR = 0.129 = Water ingestion rate (L/day)

WCx = Chemical-specific = Concentration of chemical in water (mg/L)

BW = 3.2 = Body weight (kg wet weight)

HQ = DI_x
Screening Value